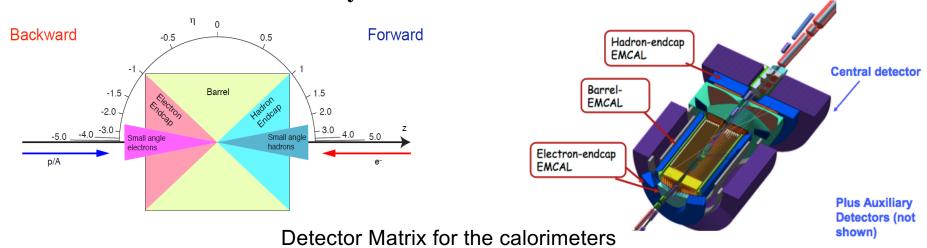
EMCal for eID

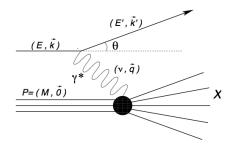
A.Bazilevsky (BNL)

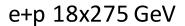

For the EIC-YR-Detector-Calorimetry Group

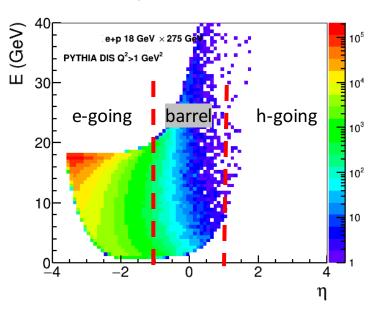
Pavia Meeting

May 20-22, 2020

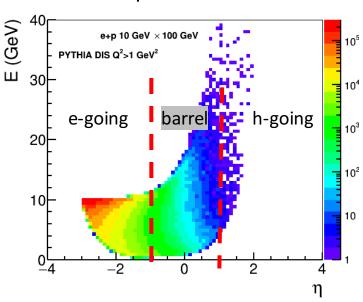
EIC Calorimetry overview

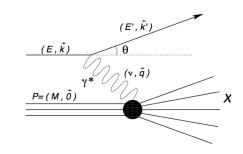

☐ Several options including crystals, glass, W/SciFi, Shashlyk, Pb/Sc, PbGl, etc.

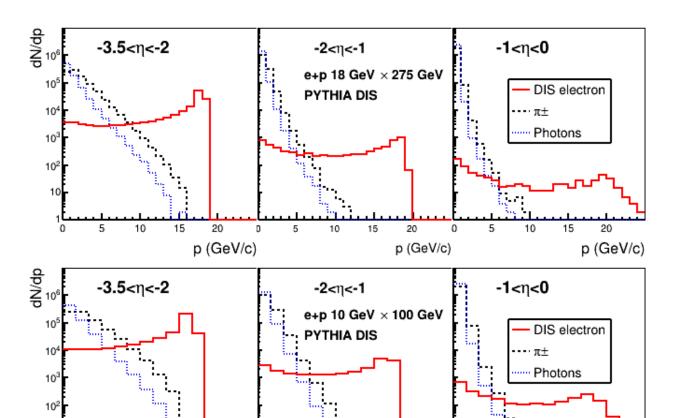



η	Nomenc lature	EmCal				HCal					
		Energy resolution %	Spatial resolution mm	Granul arity cm^2	Min photon energy MeV	PID e/π πsuppre ssion	Technology solution	Energy resolution %	Spatial resoluti on mm	Granula rity cm^2	Technolog y solution
-3.5:-2	backward	2/√E ⊕ 1	3/√E ⊕ 1	2x2	50	100	PbWO ₄	50/√E⊕10	50/√E ⊕ 30	10x10	Fe/Sc
-2:-1	backward	7/√E ⊕ 1.5	3(6)/√E ⊕ 1	2.5x2.5 (4x4)	100	100	DSB:Ce glass; Shashlik; Lead glass	50/√E⊕10	50/√E ⊕ 30	10x10	Fe/Sc
-1:1	barrel	(10-12) /√E ⊕ 2	3/√E ⊕ 1	2.5x2.5	100	100	W/ScFi	100/√E⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc
1:3.5	forward	(10-12) /√E ⊕ 2	3/√E ⊕ 1	2.5x2.5 (4x4)	100	100	W/ScFi Shashlyk, glass	50/√E⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc

Technology selection depends on the space available Several other technologies are under consideration Material in front will affect the resolution e/π : pion suppression depends on the energy, and the energy and momentum resolutions


Inclusive DIS: scattered electron




e+p 10x100 GeV

Mostly scattered in backward (e-going) and barrel Electron energy varies from 0 to e-beam energy in backward (e-going) And to higher energy in barrel and h-going region

Inclusive DIS: background

5

10

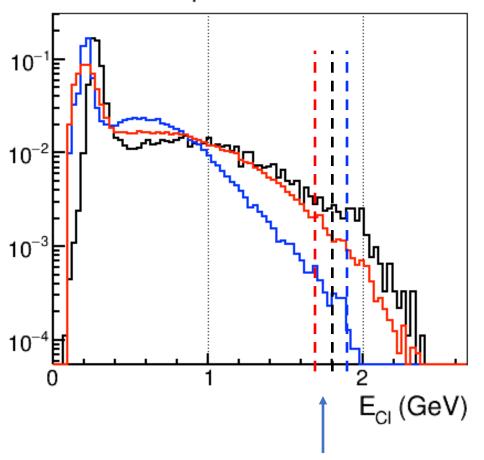
p (GeV/c)

18x275 GeV

10x100 GeV

Clean measurements at higher momenta Huge background at lower momenta

p (GeV/c)


5

10

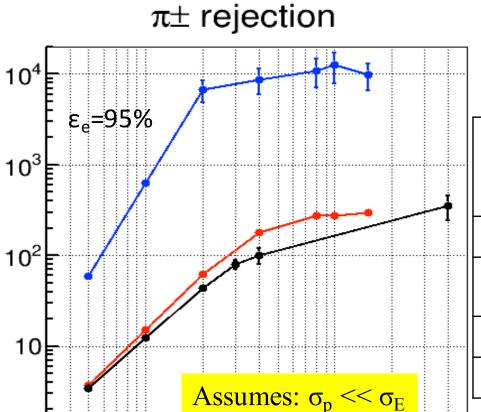
p (GeV/c)

h± response in EMCal

EMCal response to 2 GeV/c π -

Ideal case:

- ➤ No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- > Gaussian response to electron


	PbWO ₄	W/SciFi	PbSc
	Crystal (GEANT)	(sPHENIX, GEANT)	(PHENIX, data)
Depth, X ₀	20	~20	18
$\frac{\sigma_E}{E}$	$\frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{13\%}{\sqrt{E}}$ \oplus 3%	$\frac{8\%}{\sqrt{E}}$ \oplus 2%
Depth, $\lambda_{\rm l}$	0.87	~0.83	0.85
e/h	>2		<1.3

E/p > 1 - 1.6 · $\sigma_{\rm EMC}$ to keep $\varepsilon_{\rm e}$ =95%

π ± rejection with E/p cut

10

p (GeV/c)

Ideal case:

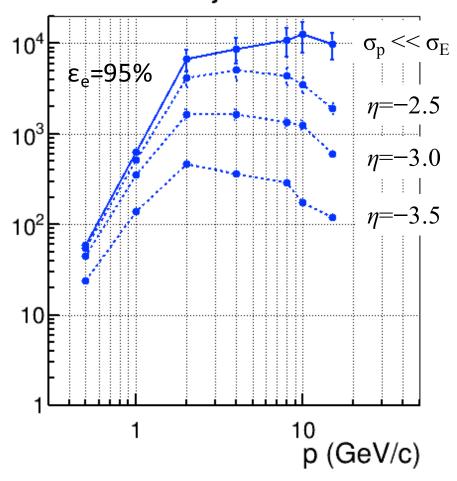
- ➤ No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- > Gaussian response to electron

	PbWO ₄	W/SciFi	PbSc
	Crystal (GEANT)	(sPHENIX, GEANT)	(PHENIX, data)
Depth, X ₀	20	~20	18
$\frac{\sigma_E}{E}$	$\frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{13\%}{\sqrt{E}}$ \oplus 3%	$\frac{8\%}{\sqrt{E}}$ \oplus 2%
Depth, $\lambda_{\rm I}$	0.87	~0.83	0.85
e/h	>2		<1.3

E/p > 1 - 1.6 · $\sigma_{\rm EMC}$ to keep $\varepsilon_{\rm e}$ =95%

Including momentum resolution

PbWO₄ Crystal (GEANT)

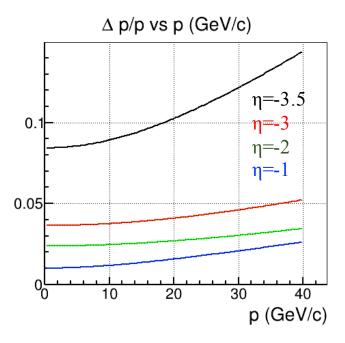

$$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$$

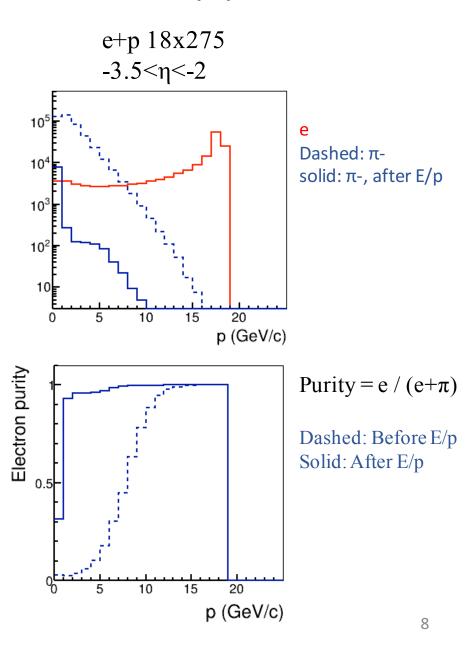
BaBar-based Tracking model: TPC (barrel), Si +GEM (forw) (Fun4All-GEANT4 simulation)

$$\Delta$$
 p/p vs p (GeV/c) $\eta=-3.5$ $\eta=-3$ $\eta=-2$ $\eta=-1$ 0.05

E/p > 1 - 1.6 ·
$$\sqrt{\sigma_{EMC}^2 + \sigma_p^2}$$
 to keep $\varepsilon_{\rm e}$ =95%

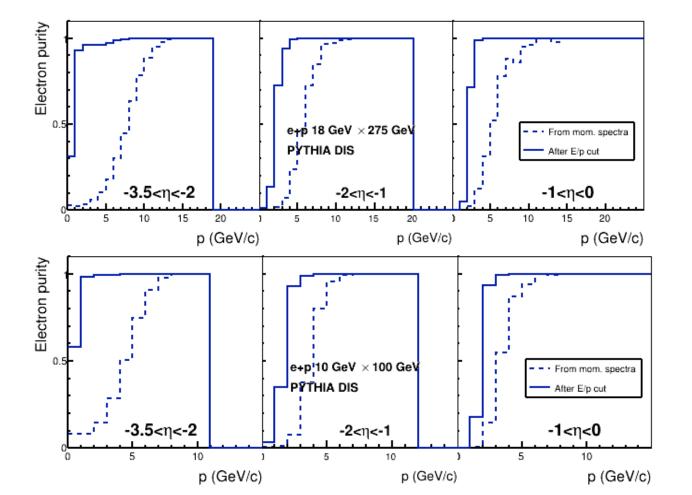
$\pi\pm$ rejection




DIS: Hadronic Background Suppression

PbWO₄ Crystal (GEANT)

$$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$$


BaBar-based Tracking model: TPC (barrel), Si +GEM (forw) (Fun4All-GEANT4 simulation)

DIS scattered electron purity

-3.5<η<-2	-2<η<-1	-1<η<1
$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{\sigma_E}{E} = \frac{7\%}{\sqrt{E}} \oplus 2\%$	$\frac{\sigma_E}{E} = \frac{12\%}{\sqrt{E}} \oplus 2\%$

Ideal case:

- ➤ No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- > Gaussian response to electron

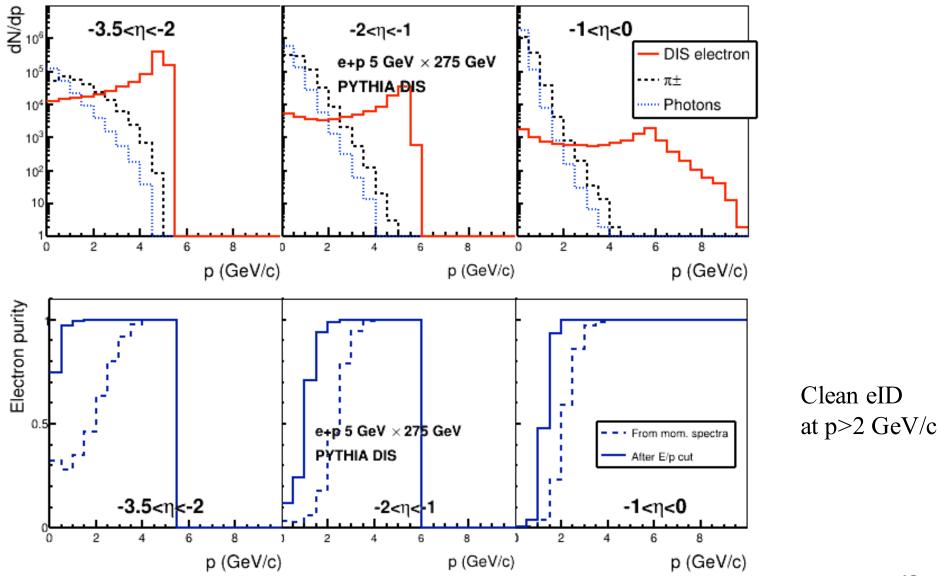
Purity = e/(e+h)

18 GeV × 275 GeV: Clean eID at >4 GeV/c

10 GeV × 100 GeV: Clean eID at >2-3 GeV/c

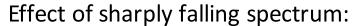
Summary

- We are at initial stage in evaluation of EMCal eID capability

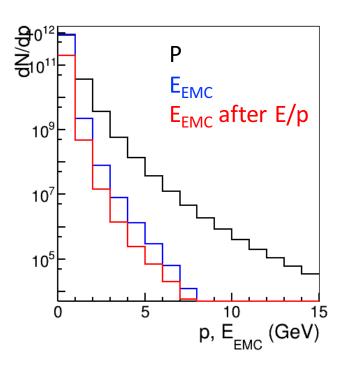

 Calculations done for "nearly ideal" detector and environment

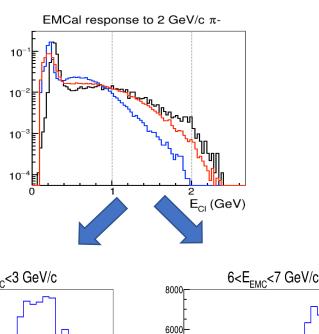
 Need to explore world wide experimental experience with similar EMCals

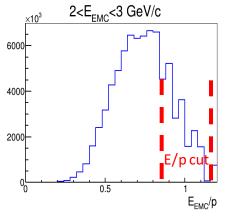
 Need to take and evaluate test beam data for each EMCal prototype (ongoing R&D)
- Tracking momentum resolution effect is dominant in EMCal+Tracking eID capabilities in the region covered by high resolution EMCal (-3.5< η <-2)
- ➤ EMCal+Tracking eID provides high electron purity at p>4-5 GeV/c at the highest beam energy configuration
 - Need additional eID capabilities at p<4-5 GeV/c

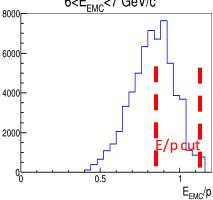

Backup

ep 5x275

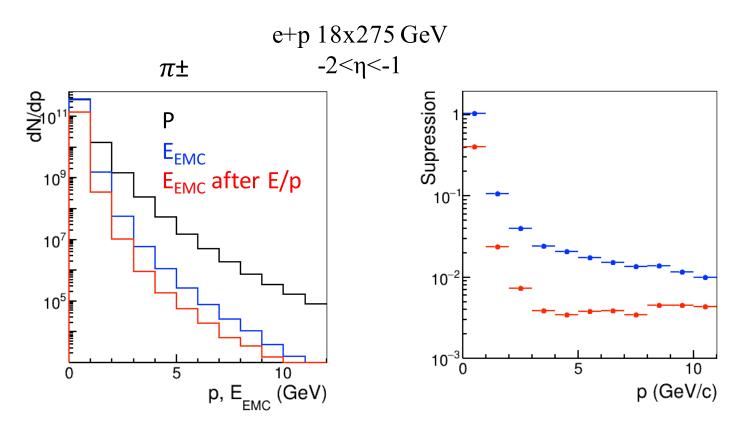


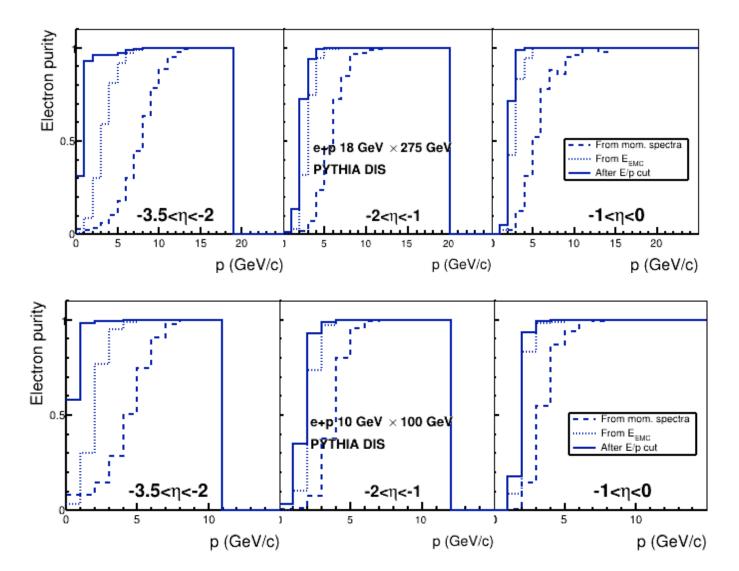

Inclusive DIS: Background Suppression


Use E_{EMC} to measure electron candidate momentum Use p for E/p cut



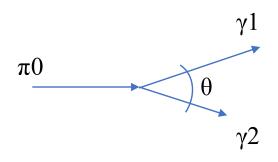
Effectively selects hadrons with high E/p ratio





EMCal: Hadronic Background Suppression

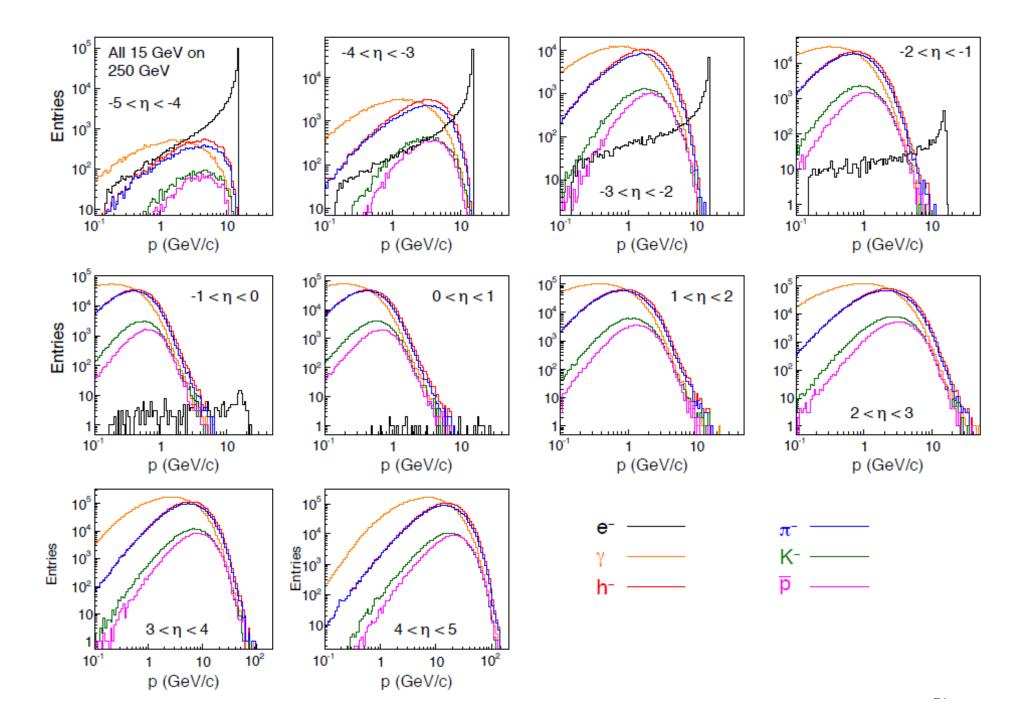
Use E_{EMC} to measure electron candidate momentum Use p for E/p cut


>50 charged hadron suppression at >4 GeV/c due to **EMCal response** ~300 charged hadron suppression at >3 GeV/c after **E/p cut**

Granularity and $\pi 0/\gamma$ discrimination in EMCal (alone)

"Usual" criteria:

 $\pi \rightarrow \gamma \gamma$ distinguished if photons are separated by 1 tower size



$$\theta = \frac{2m_{\pi 0}}{E_{\pi 0}\sqrt{1-\alpha^2}} \qquad \alpha = \frac{E_{\gamma 1}-E_{\gamma 2}}{E_{\gamma 1}+E_{\gamma 2}}$$

$$\alpha = \frac{E_{\gamma_1} - E_{\gamma_2}}{E_{\gamma_1} + E_{\gamma_2}}$$

$$\theta_{min} = \frac{2m_{\pi 0}}{E_{\pi 0}}$$

Θ _{min}	E _{π0} GeV
0.005	54
0.01	27
0.02	13.5

